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Abstract: For a below-knee amputee using an artificial
limb, proper alignment of the prosthesis is critical for
optimal comfort and function. In this research, a layered
perceptron artificial neural network was trained to use
prosthesis force data w0 recognize and correct misaligrment.
The accuracy of a preliminary network was encouraging
though not within clinical precision. Data from a larger
paticnt population will significantly enhance performance.

I. INTRODUCTION

For lower-limb amputees using artificial limbs, proper
positioning of the prosthetic foot relative to the socket is
critical for restoration of function of the missing extremity.
With optimal alignment of the foot and socket, the amputee
is comfortable, stable, and energy efficient. Misalignment,
however, can cause instability, fatigue, and ultimately tissue
damage which may require amputation at a higher anatomical
level in severe cases.

Current clinical alignment is a qualitative, costly, and

- time-consuming process that cannot guarantee optimal
alignment. The clinician visually analyzes the patient's gait
style to identify 'abnormal’ gait characteristics and combines
that information with the patient's verbal assessment of fit to
establish appropriate modifications. Alignment fitting
sessions are lengthy procedures, typically one to two hours,
but are critical for the amputee because an incorrect alignment
can induce tissue injury causing pain with restricted mobility
and function.

Previous laboratory research has demonstrated that
parameters associated with prosthetic gait force/time curves
are related to the alignment of the prosthesis. Force maxima
{1}, gait phase durations, and step-to-step repeatability (2] are
examples. Though single studies investigating prosthetic
alignment relationships to one or two gait features have been
conducted, a method for fusing this information into a
composite clinical decision for alignment modification is
lacking. The objective of this research is to use
computational intelligence techniques to predict alignment
based on prosthesis force data. The technique will have use as
a clinical tool to facilitate the speed and accuracy of alignment
and a prosthetics research tool to improve understanding of
prosthetic gait.

1. METHODS

Instrumentation: To develop a method for characterization
and pattern recognition of gait data, a device is required to
measure forces and moments in the prosthesis during
ambulation. An aluminum prosthetic shank pylon was
instrumented with twenty strain-gages to record all six force
and moment components [3]. Single-slit collars, which
helped 10 ensure uniform hoop stress at the connections and
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minimize crosstalk error, were used to connect the shank to
custom-designed inserts fastened to the socket above and the
foot below. Signal conditioning instrumentation was
contained in a backpack box attached to the instrumented
shank pylon with a multi-conductor cable. All data were
stored to a data acquisition computer which was connected to
the backpack box using a multiconductor cable.

Studies to date: Prosthetic force data were collected on
three male unilateral below-knee amputee subjects in concert
with interface stress measurements [3]. Subjects walked the
length of an 18 meter hallway twelve times, four times at
each of three different angular alignment settings:
plantarflexion, zero, and dorsiflexion. Zero was optimal
alignment as deemed by a team of prosthetists, and
plantarflexion and dorsiflexion were angular adjustments from
zero. Approximately fifteen steps were collected for each of
the three alignment settings for each subject.

Waveform Characterization and Pattern Recognition: The
goal is to identify relationships between the force data and the
alignment setting. These relationships are nonlinear and
nontrivial. Our six-axis force transducer, however, provides
abundant experimental data representing that relatonship. An
artificial neural network (ANN) is appropriaie for this
problem since there is a need o fit complex functions and
learn from examples.

ANN'’s are nonlinear modeling systems very loosely based
on biological networks {e.g. 4,5]. The basic element is a
node ('neuron’) which computes a scalar output from a simple
function of its inputs. Many nodes are connected into a
network and communicate their activities to each other via
weighted links ('synapses’). In the layered perceptron neural
network, nodes are grouped into a series of layers sandwiched
between the inputs and the outputs. Error backpropagation, a
method of gradient descent on the mean squared output error,
is the most commonly-used network training technique. To
guard against misleading results due to overfitting, the
performance of the network is usually tested on a separate
validation set, i.e. data the network did not see during
training.

1. RESULTS

Two preliminary networks were tested and gave the resulis
described below. Both were trained by backpropagation. The
output in each case is the number of turns of the adjustment
screw needed to optimize alignment. The maximal acceptable
error, established by practicing clinicians, is 0.25 screw wm.
For comparison, a nearest neighbor classifier (on raw data)
gives 3.61 screw turns RMS error, which is not within the
acceptable limit.

(1) The first neural netwaork was trained on a low resolution
representation of the actual waveforms. As illustrated in
Figure 1, the 100 samples for each of the 6 measured shank
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force vectors were reduced to 5 samples for each variable by
averaging over blocks of 20 samples (‘'section-averaging
method"). These were then presented to a network with 30
inputs, two hidden layers of 5 and 6 units, and 1 output. The
network was run for both one subject and three subjects.
Tables 1 and 2a,b summarize the results.

(2) A second network was trained using prosthetic force
waveform features identified by ‘experts’ (clinicians and
bioengineers) of relevance to alignment. Selected features
were: (i) the sagittal bending maximum, normalized by
subject weight; (ii) the torsion maximum in the second half
of stance phase, normalized by weight and limb length; and
(iii) the ratio of the axial force minimum wough over the
axial force first peak. A scatter plot of feature (iii) is shown
in Figure 2. The data shows a correlation with the alignment,
however there is considerable noise and subject dependence.

Several network architectures were tested. The architecture
used to achieve the results below had 3 inputs, 2 hidden units,
and 1 output unit and was trained by backpropagation. Data
from only one subject were used. Results for three
alignments are shown in Table 2a,b.

IV. DISCUSSION

For both networks, the fact that test error was much larger
than the training error indicates a need for more data or that
the network has too many degrees of freedom. Too many
degrees of freedom can cause the network to classify each of
the three alignments rather than to form a regression. Thus
data for more alignment settings are also needed.

For the waveform-sectioning network, results are better for
a single subject than for all three subjects. This indicates
large subject--lo-subject variability and a need for data from
more subjects to normalize out the walker dependence.

TABLE 1: Screw-turn root mean square error from
section-averagin method.
Etrain Etest
single subject 0.074 0.712
three subjects 0.65 1.24

TABLE 2: Scre-turn root mean square error for a
single subject for both section-averaging method
and feature method.

(a) Training Set
from section- from feature data
averaged data
target alig mean std mean std
8 7.999 0.033 7.972 0.159
0 0.007 0.082 -0.043 0.575
-5 -4.966 0.095 -4.936 0.523
Etrain = 0.074 Etrain = 0.420
(b) Test Set
from section- from feature data
averaged data
larget alig mean std mean std
8 7.990 0.058 7.879 0.155
0 0.224 0.775 -1.030 1.371
-5 -4,558 0.833 -5.516 0.281
E[es[ = 0712 Elest = 1.02

V. CONCLUSION
From a limited patient database, we were able to generate
results nearly commensurate with that required for clinical
accuracy. It is expected that finer grain training data from a
larger patient population will significantly enhance the
performance of the system.
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FIGURE 1: For the flrst neural network, an average
value was calculated for each of the five sections.
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FIGURE 2: Scatter plot results for feature (lii) used
by the second neural network.
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